Automated Ham Quality Classification Using Ensemble Unsupervised Mapping Models
نویسندگان
چکیده
This multidisciplinary study focuses on the application and comparison of several topology preserving mapping models upgraded with some classifier ensemble and boosting techniques in order to improve those visualization capabilities. The aim is to test their suitability for classification purposes in the field of food industry and more in particular in the case of dry cured ham. The data is obtained from an electronic device able to emulate a sensory olfative taste of ham samples. Then the data is classified using the previously mentioned techniques in order to detect which batches have an anomalous smelt (acidity, rancidity and different type of taints) in an automated way.
منابع مشابه
Combining Supervised and Unsupervised Models via Unconstrained Probabilistic Embedding
Ensemble learning with output from multiple supervised and unsupervised models aims to improve the classification accuracy of supervised model ensemble by jointly considering the grouping results from unsupervised models. In this paper we cast this ensemble task as an unconstrained probabilistic embedding problem. Specifically, we assume both objects and classes/clusters have latent coordinates...
متن کاملImproving Automated Land Cover Mapping by Identifying and Eliminating Mislabeled Observations from Training Data
This paper presents a new approach to identifying and eliminating mislabeled training samples. The goal of this technique is to decrease the error of classification algorithms by improving the quality of the training data. The approach employs an ensemble of classifiers that serve as a filter for the training data. Using an n-fold cross validation, the training data is passed through the filter...
متن کاملHigh-Dimensional Unsupervised Active Learning Method
In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...
متن کاملAutomatic road crack detection and classification using image processing techniques, machine learning and integrated models in urban areas: A novel image binarization technique
The quality of the road pavement has always been one of the major concerns for governments around the world. Cracks in the asphalt are one of the most common road tensions that generally threaten the safety of roads and highways. In recent years, automated inspection methods such as image and video processing have been considered due to the high cost and error of manual metho...
متن کاملReview of Ensemble Classification
Abstract— Data mining techniques like classification is effectively for used for prediction. Due to technological up gradation, the datasets which are large are distributed over different locations and classification has become a difficult task. The single classifier models are not sufficient for these types of datasets. So the recent research concentrates on combination of various classifiers ...
متن کامل